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We describe multidimensional extensions to a one-dimensional approach to tunneling splittings using a relaxed
potential in the imaginary-frequency normal mode of the relevant saddle point (Wang, Y.; Bowman, J. M.
J. Chem. Phys. 2008, 129, 121103). Tests of these extensions are given for H3O+ and NH3 where full
dimensional tunneling splittings are available and for the vinyl radical using a new full-dimensional potential
energy surface.

I. Introduction

Hydrogen tunneling has long been recognized as playing an
important role in a variety of chemical and biological processes.
As a result, much effort has been directed toward the develop-
ment of simple models that are hopefully able to accurately
describe this phenomenon.1,2 Beginning with Wigner in 1932,3

a variety of model Hamiltonians for treating tunneling have been
formulated. These models have, in turn, been applied to a
number of molecules, notably malonaldehyde,4-6 H3O+,7,8 and
ammonia9 to elucidate factors that influence this behavior.

Given the difficulty of carrying out full-dimensional studies
of most systems of interest, it is important to be able to identify
the one (or a few) degree of freedom that is important to the
tunneling process. Often this has involved the reduction of the
3N - 6 degrees of freedom to a single degree of freedom.
Perhaps the most widespread formulation of the approach is to
identify the single degree of freedom as the intrinsic reaction
coordinate (IRC) or, equivalently, as the minimum energy path
(MEP).10-13 This one coordinate is defined as the steepest
descent path from a saddle-point transition state to the reactants
and products. At the (first-order) saddle point that separates
reactant and product states, there is a single imaginary frequency
rectilinear normal mode, and in the Wigner theory the magnitude
of this frequency determines the tunneling rate. The MEP theory
can thus be regarded as a generalization of the Wigner method,
which is meant to reduce the coupling along this coordinate
and the remaining 3N - 7 ones as the system proceeds from
reactants to products via the corresponding saddle point.

The rigorous generalization of the IRC approach, referred to
as the reaction path Hamiltonian, was given by Miller et al.14

Given that the IRC is a curvilinear coordinate, the kinetic energy
operator of this Hamiltonian is somewhat complex and ap-
proximations to it are often made (e.g., neglecting curvature
terms). Recently, Rush and Wiberg15 and Dong and Nesbitt16,17

successfully applied an approximate version of the curvilinear
Hougen-Bunker-Johns Hamiltonian18 to calculations of tun-
neling splittings. (Rush and Wiberg’s application was to
ammonia and Dong and Nesbitt’s applications were to H3O+ 16

and the vinyl radical.17) In the Rush-Wiberg implementation,
an approximate but still curvilinear kinetic energy operator was

used together with a one-dimensional relaxed potential in a
large-amplitude coordinate (in their application, this was the
“umbrella” angle) to define the 1D Hamiltonian. Dong and
Nesbitt extended this approach by making the well-known
vibrationally adiabatic (VA) approximation for the remaining
3N - 7 degrees of freedom and adding the local vibrational
energy to the relaxed potential. In these applications, the identity
of the large amplitude coordinate is obvious; in the case of H3O+

and NH3 it is the umbrella angle and for C2H3 it is the CCH
bond angle.

We recently proposed another 1D approach to calculate
tunneling processes.19 In this approach, which can also be
regarded as an extension of the Wigner method, the reaction
coordinate is the imaginary-frequency normal mode Qim of a
saddle point separating reactants and products. The associated
1D Hamiltonian consists of a one-dimensional kinetic energy
operator, neglecting the vibrational angular momentum (VAM)
terms (also termed the Coriolis coupling terms), plus the
potential in Qim obtained by minimizing the full potential with
respect to the remaining degrees of freedom for fixed values of
Qim. The VA approximation can also made in this 1D method;
however, it was applied only for the zero-point energy in the
other degrees of freedom. The method was tested for the
tunneling splittings of malonaldehyde and d1-malonaldehyde and
the tunneling reaction probability for the D + H2 reaction, for
which exact full-dimensional results are available. The level of
agreement was quite good, especially considering the simplicity
(and generality) of the model.

The neglect of VAM terms in the normal-coordinate Watson
Hamiltonian is one that is commonly made throughout the
literature, and often it can be justified on the grounds that these
terms scale like rotation constants, which are typically much
smaller than vibrational term energies. For example, Viel et al.
used the Watson Hamiltonian, neglecting the VAM terms, to
calculate the tunneling splitting in malonaldehyde,20 and Manthe
and co-workers performed an almost exact calculation of the
cumulative reaction probabilty for H + CH4 using the same
approximation.21 Earlier, Seideman and Miller22,23 used the exact
Watson Hamiltonian to obtain the cumulative reaction prob-
ability, defined below, for the three-dimensional H + H2 reaction
using an exact method for zero total angular momentum, J )
0. They also demonstrated that neglecting the VAM terms in
the Hamiltonian led to minor changes in the probability.23
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Although 1D models can capture the basic behavior needed
to describe tunneling, they can be improved by generalization
to higher dimensions. Doing this using curvilinear coordinates,
which provide a better zero-order description of large amplitude
motion than rectilinear coordinates, requires the use of complex
and coordinate-dependent kinetic energy operators. The ap-
proach taken here, which is based on using rectilinear coordi-
nates, has the advantage of a universal kinetic energy operator,
at least for nonlinear configurations. Extensions to include
additional degrees of freedom go under the heading of reduced
dimensional Hamiltonians and reaction surface Hamiltonians.
Typically, the choice of the subset of degrees of freedom is
made on the basis of physical grounds, often by first identifying
so-called spectator degrees of freedom. An example is the H2

+ CNf HCN + H, where CN is the spectator mode. A recent
noteworthy example of such an approach is the reduced
dimensionality approach taken by Sibert et al. to describe the
double proton transfer in the formic acid dimer.24,25 As stressed
by that group, one advantage in considering more than one
degree of freedom is the elimination of the vibrationally
adiabatic approximation (for the coupled degrees of freedom),
which, as they demonstrated and as is well known, can be
problematic for excited states (due to avoided crossings, etc.).
We base our choice of the set of coupled modes on the necessity
of spanning the two minima, representing reactant and products,
or two isomers and the associated saddle point separating them.
Modes are added sequentially on the basis of the displacement
they undergo in traversing these stationary points on the full-
dimensional potential energy surface. The imaginary frequency
mode Qim is always included in the set of coupled modes. This
generalization should increase the accuracy of the method by
allowing for coupling among the large-amplitude modes.
Another obvious advantage of a multidimensional theory is that
convergence of results can be monitored with respect to the
number of coupled modes, and that is a point emphasized here.

The details of the theory for this generalization are given in
the next section. A simple approximation is also proposed to
account for VAM coupling for the case of the 1D model.
Following that, the computational methods used to obtain
tunneling splittings for H3O+, NH3, and the vinyl radical are
described. Test results and discussion are then presented,
followed by a summary and conclusions in the final section.

II. Theory

After a brief description of the Watson Hamiltonian, the
simple one-dimensional case, where VAM terms are neglected,
is reviewed, and its generalization to higher dimensions is given.
In addition, a new one-dimensional model that includes ap-
proximate contributions from the VAM terms is presented. The
computational algorithm that has been designed to implement
this generalization is also described. All calculations here are
for zero total angular momentum, J.

In terms of mass-scaled, rectilinear normal coordinates, the
exact kinetic energy operator in atomic units for J ) 0 is given
by26

where

and µR� is the inverse of the effective moment of inertia tensor
and �k,l

R are the Coriolis coupling constants. The first term in
this operator is known as the VAM term, while the second is
the so-called “Watson” term, and the last is the standard kinetic
energy operator in rectilinear coordinates.

A. Generalization of 1D Model without VAM. We will
start with the generalization of the previously developed one-
dimensional model to the multidimensional case. Neglecting the
VAM terms and the “Watson” term yields the following simple
Hamiltonian for the one-dimensional case

In general, we will take Q1 ) Qim so that the first mode is
the one corresponding to the imaginary frequency at the saddle
point. The potential, V(Q1), appearing in this Hamiltonian is
fully relaxed with respect to the other degrees of freedom for a
fixed value of Q1. This Hamiltonian can be used in either one-
dimensional calculations or approximate multidimensional ones
such as the VA approximation. In this well-known approxima-
tion, the zero-point contributions of the remaining degrees of
freedom are accounted for adiabatically. To implement this, a
normal-mode analysis is done at the relaxed geometry corre-
sponding to the minimum of the potential for a fixed Q1, and
the resulting frequencies are added to the potential. Within this
approximation, the Hamiltonian becomes

where

The generalization to include multiple modes is straightfor-
ward. We will continue to use the notation that Q1 ) Qim, and
we will denote the second mode to be coupled as Q2, the third
mode as Q3, and so on. Recall that unless specified otherwise
the choice of these additional modes is based on the order of
displacement of the modes from the saddle point to the minima.
Again, starting from the Watson Hamiltonian and neglecting
the VAM terms and the “Watson” term, we arrive at the
Hamiltonian

where M is the total number of coupled modes, out of the 3N
- 6 modes, to be included in the calculation. The multidimen-
sional potential, V(Q1,..., QM), is relaxed with respect to the
remaining degrees of freedom for fixed values of Q1,..., QM.
The treatment of the remaining degrees of freedom can be
formulated in several ways; we use the well-known adiabatic
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approximation, which takes full advantage of relaxation. The
relaxation can be performed using a variety of methods; here
we used the standard generalized Newton method which requires
the computation of the Hessian matrix. At convergence, the
square root of the eigenvalues of the Hessian yields the
frequencies, ωk, at the relaxed geometry. Because this geometry
is relaxed with respect to all remaining degrees of freedom, we
are guaranteed that all ωk’s are real. At the transition state, these
are simply the normal-mode frequencies corresponding to the
transition-state normal modes; however, at other points, they
correspond to the locally separable normal modes. Within this
approximation, the uncoupled spectator modes are rotated to
maintain their separability in response to the relaxed geometry
determined by the fixed positions of the “active” modes. Using
this approach and making the harmonic approximation results
in the generalized Hamiltonian given by

where

B. Model Including VAM Terms. There are cases (e.g.,
NH3 and H3O+) where the VAM terms make a significant impact
on the ground-state splitting, and therefore we also wish to
develop an approximate treatment of these terms for the 1D
model. The relaxed potential V(Q1) or VVA(Q1) defines a
geometry on the potential energy surface Qrel(Q1) ) {Q1, Q2,...,
Q3N-6}. The inverse moment of inertia, µR�, is properly a
function of all 3N - 6 normal modes, and therefore we use the
geometry provided by the relaxation Qrel(Q1). We can thus
approximate the “Watson” term as

which makes it formally a function of only the single active
mode. The normal-mode analysis at the relaxed geometry also
provides a set of frequencies, ωk, and eigenvectors, Q′k, which
are rotations of the original set of normal modes, for each fixed
value of Q1. By making the simple harmonic-oscillator ap-
proximation for each of these other degrees of freedom, we can
represent the ground-state wave function for each by the
corresponding ground-state harmonic-oscillator wave function

and then averaging the VAM terms over these ground-state wave
functions. This is consistent with making the VA approximation
since the zero-point energy associated with this wave function
is ωk/2. Evaluation of the VAM terms, ΣR�π̂RµR�π̂�, then simply
requires evaluation of the following well-known integrals for
the ground-state harmonic oscillator wave functions:

When we expand these terms, we get

and evaluating the integrals with respect to all the Q′k modes,
according to the equations in eq 11, yields the following
expression for the one-dimensional VAM terms

We then add eqs 9 and 13 to our reference Hamiltonian in
eq 4 to get a one-dimensional model that includes VAM.
Because of the rotation of the original modes introduced by
the use of the Q′k modes, the coriolis coupling constants �i,j

R

are themselves functions of Q1, and therefore they must also
be evaluated at each geometry defined by the choice of Q1. The
generalization of this approach to higher dimensions appears
straightforward.

III. Computational Methods

To minimize the size of the basis needed to find eigenvalues
and eigenfunctions of the Hamiltonian given by eq 7, we adopt
the following scheme. First, an optimized set of grid points
(described in detail below) is generated for each mode. Then
the Hamiltonian corresponding to the two-dimensional subspace
spanned by Q1 and Q2 in the grid basis is diagonalized and the
eigenfunctions are saved. A subset of these eigenfunctions is
then coupled with the grid basis for Q3 to generate the three-
dimensional subspace. Continuing in this fashion yields solutions
to the four-, five-, and higher-dimensional Hamiltonians.
Although the algorithm we implemented is completely general
and can handle coupling an arbitrary number of modes, in
practice six- or seven-dimensional calculations are the upper
limit because of the increase in computational time with each
additional mode.

We employ a discrete variable representation (DVR) basis27,28

derived from the sinc function to represent each normal mode
that will be included in the calculation. The integrals are
approximated using the appropriate numerical quadrature.

Ĥ ) -1
2 ∑

i

M
∂

2

∂Qi
2
+ VVA(Q1,...,QM) (7)

VVA(Q1, ..., QM) ) V(Q1, ..., QM) + 1
2 ∑

k

3N-6-M

ωk(Q1,...,QM)

(8)

-1
8 ∑

R
µRR(Q1,...,Q3N-6) ) -1

8 ∑
R

µRR[Qrel(Q1)] (9)

ψ(Q′k) ) (ωk

π )
1

4 exp(-
ωk

2
Q′k

2) (10)

∫ψ*(Q′k)
∂

2

∂Q′k
2
ψ(Q′k) dQ′k ) -

ωk

2

∫ψ*(Q′k)
∂

∂Q′k
ψ(Q′k) dQ′k ) 0

∫ψ*(Q′k)Q′k
2ψ(Q′k) dQ′k )

1
2ωk

∫ψ*(Q′k)Q′kψ(Q′k) dQ′k ) 0

∫ψ*(Q′k)Q′k
∂

∂Q′k
ψ(Q′k) dQ′k ) -1

2

∫ψ*(Q′k)
∂

∂Q′k
Q′kψ(Q′k) dQ′k )

1
2

(11)

-1
2 ∑

R�
∑
i,j

�i,j
RQi

∂

∂Qj
µR� ∑

k,l

�k,l
�Qk

∂

∂Ql
(12)

-1
2 ∑

R�
µR�[ ∑

i,j

�i,j
R�i,j

�(- ωj

4ωi
- 1

4) +

∑
i

�1,i
R�1,i

�(-Q1
2
ωi

2
+ 1

2ωi

∂
2

∂Q1
2) +

�1,i
R�i,1

�(1
2

∂

∂Q1
Q1 - 1

2
Q1

∂

∂Q1
)] (13)

7558 J. Phys. Chem. A, Vol. 113, No. 26, 2009 Kamarchik et al.



Starting from the primitive one-particle basis,

yields an equally spaced grid of nDVR + 1 points over the interval
[-hnDVR, hnDVR]. This interval can be shifted so that it is
centered at any other location by a trivial change of variables.
In this basis, the potential is diagonal and the kinetic energy
operator is given as29

From an initially dense equally spaced grid, we can contract to
a smaller set of basis functions, the potential optimized
(PODVR) basis, by solving the equivalent reference Hamilto-
nians given by eq 4 for each mode. The eigenfunctions, ψ(Q),
corresponding to the lowest nPODVR eigenvalues are taken and
the matrix corresponding to the coordinate operator

is constructed. Diagonalization of this matrix then yields a new
set of nPODVR grid points that are optimum for the Hamiltonian,30,31

and which we will denote as φi
PO(Q). To evaluate the matrix

elements of the kinetic energy operator within the φi
PO(Q) basis,

the elements in the primitive basis, φi(Q), are first transformed
using the eigenfunctions, ψ(Q), of the reference Hamiltonian
and then transformed again using the eigenfunctions of the
coordinate operator to give, finally, 〈φi

PO(Q|T̂|φj
PO(Q)〉.

Starting from the case where M ) 2, we use the direct product
basis

of the PODVR grids in the first two modes. Equation 7 is then
solved in this basis, and a set of eigenfunctions from this
calculation is saved. The M ) 3 equations are then solved in
the direct product basis

where ψi(Q1,Q2) is an eigenfunction from the M ) 2 calculation
and φj

PO(Q3) is one of the PODVR functions in the third mode.
This scheme can then be applied iteratively until the desired
level of mode coupling is reached.

For the M ) 3 equations, the kinetic energy matrix elements
are

The two terms here are, respectively, the transformation of the
kinetic energy integrals from the previous calculation and the

PODVR kinetic energy grid. The potential energy elements can
be calculated as

where Q1
i represents the ith PODVR point for mode one, and

we employed the fact that the potential is diagonal in the
PODVR representation to arrive at the latter two expressions.
Similar formulas can be written for the kinetic and potential
matrix elements appearing in the M ) 4, 5,... equations.

The one-dimensional Hamiltonian including VAM terms is
also solved using a sinc basis. Because we did not implement
the higher-dimensional cases that would require a similar
sequential subspace diagonalization and recoupling approach,
no further computational details are provided for this method.

IV. Tests and Discussion

The reduced-dimensional approach to calculating vibrational
splittings was tested on three molecules: the vinyl radical, H3O+,
and ammonia, and the results are presented here. These tests
are meant to illustrate the convergence of the generalization
with respect to increasing number of coupled modes, the ability
of the method to capture information about excited states, and
the importance of including VAM terms in the one-dimensional
model for H3O+ and NH3.

A. Vinyl Radical. The vinyl radical possess a C2V saddle-
point transition state corresponding to a hydrogen migration
between two equivalent Cs global minima. This hydrogen moves
in a double well potential with a relatively low barrier and thus
results in measurable tunneling splittings of the vibrational
levels.32,33 Various reduced dimensional calculations of the
tunneling splittings of the vinyl radical were done using the
approach described above. A new ab initio-based global potential
energy surface (PES)34 was used in these calculations. We use
the criteria described above to pick the first three normal modes
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TABLE 1: Nine Normal Modes, Their Frequencies, and
Their Displacements at the Global Minimum for the Vinyl
Radical

mode frequency
displacement at
global minimum

Q1 654.7i –56.9
Q2 3380.6 –19.6
Q3 929.9 –9.0
Q4 3026.7 0.8
Q5 582.1 0.0
Q6 895.6 0.0
Q7 1385.3 3.5
Q8 1589.7 –3.7
Q9 3085.4 –0.4
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(Q1, Q2, and Q3) to be coupled. The fourth mode was chosen to
permit comparison with recent experimental results of Dong et
al.33 of the tunneling splitting for the fundamental of that mode

(the symmetric CH2 stretch). A fifth mode, which corresponds
to an out-of-plane motion, was added finally in one type of
calculation; even so-called “spectrator” modes can have an
influence on the tunneling splitting. A list of the saddle-point
normal modes along with their frequencies and displacements
at the global minimum are give in Table 1, and they are depicted
in Figure 1.

All calculations were done neglecting the VAM terms, which
we expect to be small (see below for further discussion of this).
Calculations were done without relaxing the potential, with the
relaxed potential but no VA treatment of the “spectrator” modes,
and with the relaxed potential and including the ground-state
VA approximation. The results for the ground-state tunneling
splitting are given in Table 2. Consider first the results without
a relaxed potential. As seen, the splitting changes significantly
with the number of modes and for the largest five-mode
calculation it is 0.43 cm-1. It is significant that the inclusion of
mode five affects the tunneling splitting significantly even
though that mode is not displaced at the global minimum (cf.,
Table 1). The results for the relaxed potential without the VA
approximation vary from 0.34 to 0.39 cm-1 as the number of
coupled modes increases from two to four. Finally, the
“preferred” VA results show very good stability of the splitting
in going from two to four coupled modes, with a seemingly
converged result of 0.43 cm-1. While an exact result is not yet
available on this PES, preliminary results using the MULTI-
MODE reaction path Hamiltonian approach35 give a ground-
state splitting of approximately 0.42 cm-1, in excellent agree-
ment with the VA result here. Since this approach does not
neglect VAM terms, the agreement with the present calculations
also validates the neglect of VAM terms in the present
calculations. Also, it is worth noting that the calculated splitting
is in good agreement with the experimental splitting of 0.514
cm-1.32

The differences in splitting between the various calculations
can, for the most part, be accounted for by differences in the
barrier height of the associated potentials. This is seen most
dramatically for the one-mode calculation, where the unrelaxed
potential has a barrier of 270 cm-1, which is much smaller than
the barrier of the full-dimensional PES (and also the relaxed
potential) of 1720 cm-1. The splitting for the unrelaxed 1D
potential is, as a result, very large (and very wrong). A much
improved result for the splitting is seen for the relaxed potential
and somewhat improved over that with the VA approximation.
For the two-dimensional calculation, the unrelaxed potential has
a barrier of 1200 cm-1 and with the VA approximation the
effective barrier is 1550 cm-1. Contour plots of the three
different 2D potential surfaces generated by each of these
methods are shown in Figure 2. It is worth noting the strong
correlation between these two modes, as evidenced by the large
curvature of the contour lines.

Figure 1. Five transition-state normal modes included in the vinyl calculation. From left they are Q1, Q2, Q3, Q4, and Q5.

TABLE 2: Tunneling Splitting for Vinyl with Three
Different Multidimensional Approachesa

modes used no relaxation relaxed potential VA approximation

Q1 271.65 0.60 0.51
Q1,Q2 0.62 0.34 0.48
Q1,Q2,Q3 0.32 0.36 0.43
Q1,Q2,Q3,Q4 0.30 0.39 0.43
Q1,Q2,Q3,Q4,Q5 0.43

a All values are in units of wavenumbers. As the dimensionality
of all three is increased, they approach 0.43 cm-1. At
low-dimensionality, the VA approximation delivers the best
approximation to the exact answer.

Figure 2. Contour plot for vinyl potential energy surface as a function
of modes one and two. From top to bottom, these are the unrelaxed
surface, the relaxed surface, and the relaxed surface in the vibrationally
adiabatic approximation. Contour lines are spaced at intervals of 200
cm-1, and the potentials are shifted so that the minimum for each is at
0.
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Clearly, as the number of coupled modes is increased the
barrier of the unrelaxed potential gets closer to the correct value,
and also the effect of the VA treatment of the spectrator modes
decreases. Thus, the tunneling splitting also gets closer to the
correct value. This is seen clearly by the results in Table 1.
However, this approach clearly requires a significant number
of modes in general, and since it does not contain any treatment
of the “spectrator” modes it is not recommended.

The calculations with the relaxed potential, which has the
correct barrier height, are, as expected, much more accurate than
those with the unrelaxed potential. In the present example, it
does appear that at least two modes are needed to get within
roughly 20% of the correct result. Adding the VA approximation
evidently is effective in achieving a satisfactory level of
accuracy. Even for the one-mode calculation the splitting is 20%
higher than the converged result and the two-mode calculation
splitting is only 10% higher than the converged result. These
are encouraging results for a problem with nine vibrational
degrees of freedom.

As noted, another advantage of the reduced-dimensionality
generalization is its ability to make predictions about the excited-
state splittings for any mode included in the calculation by
explicitly including the mode of interest in the group of coupled
modes. In particular, for the vinyl radical, the recent experi-

mental work of Dong et al. suggests that the splitting increases
by roughly 0.07 cm-1 for the fundamental of the CH2 symmetric
stretch.33 This is indeed consistent with the theoretical prediction
within the present four-mode VA calculation where the splitting
of this fundamental is 0.51 cm-1, which is about 0.08 cm-1

larger than ground-state splitting.
B. Ammonia. As a second example, we consider the

tunneling splittings of NH3. Because ammonia has only six
degrees of freedom, it was possible to use the iterative
diagonalization/recoupling algorithm already presented to cal-
culate the “exact” splitting, coupling all six modes. Note that
we continue to neglect the VAM terms (which as we shall show
are significant for NH3), and thus we put quotes around exact.
Although we used 30 PODVR points in each dimension and
saved 60 eigenfunctions at each iterative step, there may still
be variation on the order of 0.01 cm-1 in each result. For this
study, we used the realistic potential energy surface of Léonard
et al.,9 which has an inversion barrier of 1820 cm-1. (These
authors also reported full-dimensional tunneling splittings and
energies using this PES.)

The six normal modes at the transition state are illustrated in
Figure 3, and we will use the notation that Q1 is the umbrella
motion, Q2 corresponds to the symmetric stretch, Q3 and Q4

correspond to the degenerate bends, and Q5 and Q6 correspond
to the degenerate stretches. Only two of the saddle-point normal
modes, Q1 and Q2, are needed to span both the global minimum
and the transition state, and therefore we expect the 2D results
will give very good agreement with the “exact” results. (Note
that our designation of normal modes differs from what is used
in ref 9 and conforms to our convention of labeling the largest
amplitude saddle-point mode by Q1.) A contour plot of the 2D
potential energy within the VA approximation is presented in
Figure 4. Table 3 shows the comparison of the “exact” 6D result
(neglecting VAM terms) with the corresponding reduced-
dimensional results using the relaxed potential and the VA
approximation.

The splittings for both the ground state and several excited
states in the inversion mode are shown in Table 3. The 2D
calculation shows very good agreement for the ground state and
the first three excitations of Q1 with the 6D results and even
the 1D splittings are in good agreement with the “exact” ones.

The present “exact” ground-state splitting of 0.2 cm-1 is not
in good agreement with the full-dimensional splitting,9 which
does not neglect the VAM terms, between 0.6 and 0.68 cm-1.
This clearly indicates that neglect of the VAM terms in ammonia
is not a good approximation. This in not surprising given that
the saddle point is of D3h symmetry, and thus there are two
sets of doubly degenerate saddle-point normal modes. We
estimated the effect of the VAM using the present 1D model
with VAM and found a ground-state splitting of 1.12 cm-1,
which certainly indicates a large effect.

C. H3O+. A molecule with much larger tunneling splittings
than the two already considered is H3O+, which is similar in
structure to ammonia. The normal modes and potential energy
contours are similar to those for ammonia, and therefore they

Figure 3. Six transition-state normal modes for ammonia. From left they are the umbrella mode Q1, the symmetric stretch Q2, the degenerate
bends Q3 and Q4, and the degenerate stretches Q5 and Q6.

Figure 4. Contour plot for the relaxed ammonia potential energy
surface in the vibrationally adiabatic approximation as a function of
modes one and two. Contour lines are spaced at intervals of 200 cm-1.

TABLE 3: Comparison of “Exact” Tunneling Splittings
with One- and Two-Dimensional Calculations for Ammoniaa

splitting “exact” 1D 2D

gs 0.20 0.18 0.20
ν1 11.12 12.73 12.36
2ν1 173.34 193.12 177.14
3ν1 460.72 497.71 461.47

a The ground state, denoted by gs, and the first few vibrational
levels are compared. All values in are wavenumbers.

TABLE 4: Comparison of Exact Results with One- and
Two-Dimensional Calculations on H3O+

splitting “exact” 1D 2D

gs 21.94 19.00 22.48
ν1 272.90 270.61 274.67
2ν1 600.64 549.69 527.57
ν2 16.68 17.73
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are not repeated here. The PES used in the present calculations
is the one developed by Huang et al.7 (denoted HCB-3).

Even though, based on the results for NH3, we anticipate
significant effects from the VAM terms, we examined the
accuracy of reduced dimensional calculations neglecting them.
The modes chosen for the calculations were, in order, the
umbrella mode, the symmetric stretch, and one of the degenerate
bends. Table 4 shows the comparison of the six-dimensional
result, neglecting VAM, with the reduced dimensional results.
As seen, there is very good agreement for the ground-state
splitting and excited inversion-mode splittings even with the
1D VA calculations. Results for the splittings corresponding to
some other excited states are also given. For the fundamental
of the symmetric stretch, Q2, the 2D results are in very good
agreement with the “exact” one.

The exact ground-state splitting (based on using the full
Watson Hamiltonian) for the HCB-3 potential is 46 cm-1,7

which is significantly larger than the present “exact” value of
21.9 cm-1. The error in the present calculation is due to neglect
of the VAM terms. The present 1D model to incorporate the
VAM terms does yield a ground-state splitting of 50 cm-1,
which is a significant improvement over the result neglecting
VAM terms.

V. Summary and Conclusions

The results presented here are encouraging for the develop-
ment of reduced-dimensionality approaches to tunneling. The
generalization of the one-dimensional approach allows the
accuracy of the calculation to be increased in a systematic way
and can predict splittings using two- or three-dimensional
calculations with high accuracy. All three molecules demonstrate
excellent agreement between the low-dimensional results and
the exact results if VAM terms are neglected. Initial efforts to
approximately include the VAM coupling were described using
a 1D model, and it will be important to incorporate this coupling,
when warranted, to the higher dimensional models.

This generalization offers several improvements over the one-
dimensional method. As noted, several other authors demon-
strated the multidimensional nature of tunneling24,25,36,37 in a
variety of important molecules, and therefore it is important to
be able to effectively treat this issue. Also, as the dimensionality
is increased, it will necessarily start to approach the exact result,
since it must agree at full dimensionality. The choice of which
additional modes to include can be made based on the necessity
of spanning both the transition state and minimum, and the
importance of modes can be estimated from the displacement
in traversing these two locations. This method thus provides a
systematic and general method for improving the accuracy of
the 1D results.
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